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Abstract— In this paper we propose a hierarchical approach
to solving sensor planning for the global localization of a mobile
robot. Our system consists of two subsystems: a lower layer
and a higher layer. The lower layer uses a particle filter to
evaluate the posterior probability of the localization. When the
particles converge into clusters, the higher layer starts particle
clustering and sensor planning to generate an optimal sensing
action sequence for the localization. The higher layer uses a
Bayesian network for probabilistic inference. The sensor planning
takes into account both localization belief and sensing cost. We
conducted simulations and actual robot experiments to validate
our proposed approach.

Index Terms— Sensor planning, Localization, hierarchical ap-
proach, Particle filter, Bayesian Network

I. INTRODUCTION

In recent years, the global localization of mobile robots has
been an active area of research and various methods have been
developed. However, most of the studies have taken a passive
approach ([2]-[9]) in the sense that the robot’s actions are
random and are not planned explicitly for efficient localization.
In this paper, we propose a hierarchical approach to solving
sensor planning for global localization.

In the reports of ([2], [3]), the robot environment was
represented by an occupancy grid map (cell size: 0.1 x 0.1
m?), and the robot pose is updated after the robot’s movement
and sensor activation based on a hidden Markov model. A
Monte Carlo version of global localization (MCL) has been
reported in ([4], [9]). The particle filter resamples and updates
the belief of localization, and estimates the maximal posterior
probability density for the localization. The advantage of
MCL is that arbitrary distribution can be represented by a set
of samples, and the computational complexity of the Bayes
filter[4] is reduced. As reported in ([2], [3], [4], [9]), the
robot pose was represented by a small occupancy grid and
high angle resolution. In [10] and [11], the environment was
represented by a topological map, with corridors, T-junctions
and doorways decomposed into larger cells (cell size: 1 X
1 m?), and with each cell corresponding to a node of the
topological map. The robot updates its pose based on the
cells using the Partially observable Markov decision process
(POMDP). Since these approaches assume that it is not
necessary to know the robot’s pose in detail, the pose of the
robot is represented based on the larger cell and four compass

1Partially observable Markov decision process (POMDP) is a technique for
choosing optimal actions in partially observable stochastic domains.

directions. In the above approaches, since the robot moved
randomly without sensor planning, the systems did not always
assure efficient convergence of the global localization if the
environment had locally similar sensing patterns.

The theory of POMDP is an extension of the Markov
decision process (MDP). Using the viewpoint of a Bayesian
network, we can put a POMDP into the domain of a hidden
Markov model (HMM) using action control. POMDPs are well
understood and widely applied to mobile robot applications.
The observation node of a POMDP corresponds to the sensor
data or its features, and the state node corresponds to the robot
pose. However, in practice, the robot sensor information is
not always only one type, and a real and complex environ-
ment may need multi-sensor data for representation. How to
integrate such multi-sensor data will be a challenge for the
traditional POMDP style model.

A Bayesian network is an extension of the HMM and
Kalman filter. It allows one state node to have multiple
observation nodes, and one observation node corresponds
to multiple state nodes. In our system, we have employed
a Bayesian network to represent and integrate the sensor
information, the robot pose and the sensing actions. This
model allows us to add multiple types of sensor data arbitrarily.
Thus, our use of a Bayesian network is more general and
extensible than the POMDP style model.

Active global localization is a research topic extending
from passive global localization and addresses sensing action
selection for efficient global localization. In the past decade,
some active localization approaches ([13]-[23]) have been
proposed. Jensfelt and Kristensen[13] used multiple hypothesis
tracking based on Kalman filtering for active global localiza-
tion. The environment of their system was represented by a
topological graph. The robot pose hypotheses were tracked
based on Kalman filtering and the robot sensing commands
were generated by POMDP style planning. Tomatis et al.[19]
also proposed integrating a Kalman filter-based metric map
and a POMDP-based topological map for robot localization
and navigation. These systems([13], [19]) are similar to our
hierarchical system. We employ a particle filter to track the
robot accurately. Our particle filter can deal with linear/non-
linear dynamics with arbitrary noise. A basic Kalman filter
is limited to a linear assumption. An Extended Kalman Filter
(EKF) and Unscented Kalman Filter (UKF) can deal with non-
linear dynamics, but need to assume the existence of Gaussian
noise. We employ a particle filter only for robot localization in
the lower layer, and it is not the core algorithm of our sensor



planning for localization.

Basye et al.[20] and A. Cassandra et al.[21] have proposed
a POMDP model for robot navigation and localization. As
described in papers ([10],[11], [21]), since solving for optimal
sensor strategies with accurate localization is intractable, their
environments were represented by topological maps based
on large cells. Their robots also could not achieve accurate
localization.

To reduce the computational overhead of POMDP style
planning in a large-scale environment, we represent the en-
vironment in a hierarchical architecture. In the higher layer,
the large cells represent the topological information of the
environment. In the lower layer, a particle filter estimates the
accurate robot pose based on an occupancy grid map (grid size:
0.05 m). We can thus obtain sensing strategies based on the
topological map in the higher layer using a Bayesian network,
and localization accuracy through the lower layer using the
particle filter.

A sensor planning ideal is not only being applied in active
global localization, but it is also being employed by robot
intelligent navigation([12], [24]), active vision[33]. Zhou and
Sakane ([22], [23]) proposed two systems to perform sensor
planning for localization using a Bayesian network. Mourikis
et al.[38] proposed a method of optimal sensor scheduling for
resource-constrained localization of a robot group.

Some studies have used Bayesian networks for modeling
the mobile robot navigation environment. Asoh et al.[31]
developed a system that combines local information for local-
ization using a Bayesian network. However, their system did
not actively plan how the mobile robot should gather sensor
information, and the Bayesian network structure was manually
designed.

Fox et al.[18] proposed an Active Markov Localization
method to improve the efficiency of localization. Their method
selects the optimal sensing action sequence based on an
action selection function that takes into account the trade-off
between the increase of global localization probability entropy
and the sensing cost. The increase of the global localization
probability entropy is evaluated by calculating the difference in
the entropy for the localization belief and the belief in all free
positions in the environment. The environment is represented
by occupancy grids, and the cell size is approximately 0.1 x
0.1 m2. Their policy of selecting the optimal sensing action
seems similar to our system. However, compared to Active
Markov Localization, there are two points that differ between
our method and Active Markov Localization. First, the cell
size of the sensor planning step is different. Active Markov
Localization evaluates all of the occupancy grids (with a grid
size of about 0.1 x 0.1 m?2) to select the optimal actions for
localization. Also, our system has a hierarchical structure, and
the system obtains the sensing strategy for localization from
the higher layer using a Bayesian network based on larger
cells that are decomposed upon the occupancy grid map. So
the cell size of Active Markov Localization is smaller than
that in our system. Since the sensor planning is performed on
the occupancy grids, the actions optimized by Active Markov
Localization are more precise than our method. However, in
practice, the robot does not need such precise sensor planning
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Fig. 1. (a) The initid status of the higher layer control. (b) The Bayesian
network used in our system.

for localization, as the robot only needs to know in which
room (or area) can it localize itself quickly, or which action
is better for localization when it faces an intersection. For this
reason, the sensing action path planned by our method will
not be really optimal in the strictest sense. But it is adequate
to increase the efficiency of the localization. The second point
of difference is that we use a Bayesian network to estimate the
gross localization and plan the sensing action. The HMM style
model which is employed by the Active Markov Localization
also is a type of Bayesian network. A Bayesian network is very
expressive for representing the causal relationships between
the robot pose, sensor action and sensor information. Since
a Bayesian network has these advantages, it is more general
and extensible than the HMM style model. Using a Bayesian
network to represent multiple sensors (for example, cameras,
lasers and so on) for localization is more natural than the
HMM style model. In summary, the original contributions of
our study and this paper are:

1) A general hierarchical approach for active and precise
localization.

2) Unlike the traditional active localization approach, our
sensor planning system uses a Bayesian network for
robot gross localization.

Il. OUTLINE OF THE SYSTEM

A. System Structure

Our mobile robot estimates its pose by the hierarchical inte-
gration of the two layers. We initially decompose the environ-
mental map into some large cells (see Fig.1(a)), and perform
clustering of each cell’s geometrical features to discriminate
the classes of the cells. The lower layer uses a particle filter to
evaluate the posterior probability of the localization. When the
particles converge into clusters, the higher layer starts particle
clustering and sensor planning to generate an optimal sensing
action sequence for the lower layer’s localization. The higher
layer consists of a Bayesian network[25] which represents
the contextual relationships between the geometrical features
of the cells, the sensing actions, and the global localization
beliefs. The robot actively localizes itself precisely by the
planned actions, which are obtained by the higher layer.



B. Optimal Path Selection and Sensing Cost Definitions

In our system, we define the robot’s sensing cost by the
distance between the center points of the larger cells. The
planned action path indicates the direction when the robot
faces an intersection or decides whether or not to move into a
certain room (or area) for effective localization. So the optimal
sensing cost is not related to a minimum distance of travel in
a strict sense. Rather, the planned path is optimized based on
the decomposed larger cell.

I1l. CELL DECOMPOSITION OF THE ENVIRONMENT

The gross localization is based on large cell decomposition.
To obtain the geometrical features of the local environment,
which a robot might come across during navigation, the system
decomposes the environment into cells. Figure 1(a) shows
an example of the exact cell decomposition[26] which is
performed twice, i.e., from left to right and from top to bottom.

Our system uses a mobile robot (Pioneer 3) with two laser
range sensors (SICK, LMS200). The range data is generated
covering a 360-degree view. Since the system employs a cell-
based representation, the robot has to recognize the cell that
it currently occupies. To achieve this, the system performs
clustering of the geometrical features of the cells. The robot
gatherers range sensor data at the central point of every large
cell in four compass directions, and classifies the range data
into 20 classes using a K-means clustering algorithm [27].
Using these classified results, we can represent and recognize
the geometrical features of the cells.

In our system, we do not need to obtain an accurate
classified result in the K-means classification step, where the
classified results only give us initial probabilities of the robot
localization. The ambiguity of the localization will be reduced
at the gross localization step using the Bayesian network and
the lower layer, i.e., particle filter. We used the K-means
clustering algorithm to classify the laser data and calculated
the distances between the observed laser data and the center
points of each classified class. The distances are normalized
to probabilities, and the probabilities are the initial probability
of the robot localization. The initial probability is input into
the Bayesian network as soft evidence.

IV. LOWER LAYER FOR ACCURATE LOCALIZATION

In the past decade, particle filters[28] have been applied
to various areas such as visual tracking[29] and mobile robot
localization[30]. A particle filter estimates the posterior prob-
abilities of unobservable state variables from sensor measure-
ments. In the application to mobile robot localization, a state
typically represents a pose of the robot in the environment.
The particle filter approximates the posterior using a group
of samples (or particles) with weights that correspond to the
likelihood of the states. In every time step, the particles are
resampled based on the weight values. A particle filter for
mobile robot localization is shown in Fig. 2. The pose of
each particle simulates the possible pose of the mobile robot.
To perform global localization, the initial particles have a
uniform distribution in the free space of the environment (Fig.
2(a)). The initial sensing action of this example is random

(d)

Fig. 2. A example of mobile robot localization using a particle fi Iter by
random actions.

without planned action. After a sequence of sensing actions,
the particles converge into clusters (Fig. 2(b), (c)). When
the mobile robot turns left at an intersection, the particles
conveniently converge into one cluster (Fig. 2(d)).

V. HIGHER LAYER CONTROL

A. Bayesian network design

The higher layer employs a Bayesian network for sensor
planning as shown in Fig. 1. The nodes S;;; and S; denote
the states at time ¢ + 1 and ¢, respectively. A state is a pose
of the mobile robot at each large cell, and a state transition
occurs when the robot moves to the next cell or changes its
orientation. The higher layer performs gross localization.

We quantize the robot orientation in the cell into four
compass directions (east, west, north and south), so the robot
has four states in each cell. The node Action denotes the
robot motion while moving from one cell to an adjacent
cell. The nodes O;41 and O; denote the observation (sensor
measurement) obtained at states Sy;i1 and S;, respectively.
The observation is not raw sensor data at each cell but is
the classified results of the sensor data (see Section III).

In the following experiments, the environment is decom-
posed into 103 cells and the robot has four possible orien-
tations at each cell, so the robot has 103 x4 = 412 states.
The same number of random variables represents these states
and each variable has a probability, i.e., a real value from 0
to 1. The node S; includes these 412 variables and the node
S¢+1 has 413 random variables which correspond to the 412
states plus an error state (exception or obstacle). The node
Action includes four random variables, which correspond to
four actions: go forward, go backward, turn left, and turn right.
The nodes O;1 and O, have 20 random variables as defined
in Section I1l. The initial values of the node S; are generated
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Fig. 3. (a) Four possible actions of the mobile robot in the sensor planning phase. (b) State transition during the sensor planning for mobile robot localization.

from the sum of the weights of the particles in each particle
cluster.

After the particle clustering phase, the system locates some
particle clusters. Cell-based sensor planning starts at this stage.
The possible action sequences and state transition of each
cluster during the sensor planning are shown in Fig. 3(b).
In Fig. 3(b), Initial state denotes one pose of the robot
with a white circle (see Fig. 1(a)), which was found in the
particle clustering phase. We use ISy € {IS1,ISs,...,ISk}
to denote one of Initial state. In the Fig. 1(a), there are nine
Initial states, 50 K = 9.

IS% is the pose of the robot, when the circle has finished
a possible action, we call this step Step one. The white
circles will move from the I'nitial state to adjacent cells after
Step one. When the circle takes a two-step action, the action
sequences and state combinations are illustrated in Step two
of Fig. 3(b).

B. Learning Conditional Probability Tables of the Bayesian
Network

A Bayesian network is represented by two factors[25], the
graph structure and conditional probability tables (CPTs). The
graph structure of a Bayesian network represents the causal
relationships between the nodes. The graph structure of our
Bayesian network was designed manually (see Fig. 1). The
CPTs of the nodes can be learned from case data directly.
Since our environment information data is complete, we use
the Mazimum Likelihood Estimation[32] method to learn
the CPTs. For example, the conditional probability of node
X’s value z; is P(X = .’L'1|Z1 = 21,49 = 22,y L, = Zk),
and 71, Z,, ..., Zy is K parents nodes of node X. z1, 23, ..., 2
are denoted by the values of nodes Zi, Z,, ..., Z. So the
conditional probability P(X = z;|Z1 = 21, Z2 = 22, ..., Zy, =
zr) can be calculated as the following:

P(X = .’L'Z|Z1 = 21,22 = 22,...,Zk = Zk)
P(X =2;,71 = 21,Z2 = 22, ..., Z = 2g)
P(Zl = Zl,ZQ = ZQ,...,Zk)

N(X = ZE,‘,Zl = 21,Z2 = 22, ,Zk = Zk)
N(Z1 = Zl,ZQ = 22, ,Zk)

N(X = z;,Z1 = 21,22 = 22,...,2r, = 2j) denotes the
number of training data cases, which has X = z;,7; =
Zl,ZQ = ZQ,...,Zk = Zk- N(Zl = Zl,ZQ = Zz,...,Zk = Zk)
denotes number of the data case that has Z; = 21,72, =
22, ..+, Zr, = 2y in the total environment data.

~

C. Soft evidence of Bayesian Network

As described in Section Il1, our system has classified the
geometrical features of the cells using K-mean clustering.
However, if the geometrical features of each cell are similar,
the class boundaries may be ambiguous for recognizing the
class. If we use the classification results directly as evidences
for the Bayesian network, the inference could be too sensitive
to estimate the robot pose. Since the Bayesian network allows
us to use soft evidence[25] for inference, we use the nodes
O:+1 and Oy as soft evidences to cope with the uncertainties
of the boundaries.

For example, we assume the node O; has sensor data
obtained by the robot in a cell ¢ with an orientation m. We also
assume the sensor measurement (denoted by P;,;,) is classified
into a class n. The system calculates the distances between
the P;,, and a center point of each class, then sorts all of the
distances. By normalization, the system converts the distances
to beliefs or probabilities of the classification to the cell. The
probabilities are the soft evidences of the observation node
O;.

D. Inference for Sensor Planning

Our goal is to select an optimal sensing action sequence
for localization. The evaluation of the action sequence is
performed based on the inference of the Bayesian network
and a utility function (Eq. 10).

As shown in the following procedure, sensor planning for
localization of the higher layer has four steps:

e Calculating joint probability of nodes

e Estimating possible actions



e Predicting possible states

e Sensor planning for localization

1) Joint probability of Nodes Calculation: Initially, we
calculate the joint probability of the Bayesian network’s nodes
(Eqg. 1). The joint probability of all the nodes is calculated as
the following formulations.

P(A, S, 841,04, 0¢41) (1)
L P(A) x P(S|A) x P(Si41Ss, A) x

P(O4|A, Sy, Si41) % P(Og41|A, Si, Si41,0¢)
2 P(A) x P(S;|A) x P(S41|S¢, A) x

P(04|St, St41) x P(Opy1Si+1) 2

Based on the chain rule (CR) of probability and the con-
ditional independence (CI) relationships between the nodes,
the joint probability Eq. 1 can be rewritten as Eq. 2.
In Eg. 2, the conditional probabilities are learned by the
Maximum Likelihood Estimation method which is de-
scribed in section V-B.

2) Estimating Possible Actions: Using the joint probability
we can estimate the conditional probability distribution of the
node action given the evidences of the observation nodes Oy
and current state node S; as Eq. 4.

P(A=al3,0,) 2 P(AIS, = &) ©)
Bayes P(A =a, Sy = ét)

= 4

P(St = <§t) ( )

where:

>

(64,0t 4+1,8¢41)

St = 84,04 = 04, Og41 = O441)

P(Si41 = 8141, A =q,

and

P(St = §t) = P(St+1 = §t+1,A =a,

>

(@y0¢,6¢41,8¢41)

St = 54,04 = 04,0441 = O41)

In Eq. 3, a, 3¢, 0; and 6,11 are the evidences of the nodes
Action, Sy, Oy and Oy_1, respectively. We define the possible
actions in a list ActionList = {af,...,a%}. Each possible
action a}, € ActionList must satisfy the following condition:

P(A:a;|5t:§t,0t:6t) >0 (5)

3) Predicting Possible States: The goal of this step is
to predict the next states when the robot takes a possible
action a}, € ActionList. Initially, we calculate the conditional
probability distribution of node S;y; given the evidences of
the nodes S;, O, and one of possible action a} € ActionList
using the following formulations.

P(Si+1 = 5141|A = ay, 3¢, 01) (6)
P(S¢y1 = 5141, A =a}, 5,0¢)
P(A = a;(u*gtaat)

Bales

where:
P(A = aj;,5;,0)
= Z P(.§t+1,A :a;7§t76t76t+1)
[8¢41,0¢+41]
and

. A
P(Si11 = 8141, A = ay,, 3, 0)
~ *x A A A

= Y P11, A=a},8,061,0011)

[6¢+41]
Based on the inference of Eq. 6, we can obtain the most-
probable explanation 57, ; that satisfies

§?+1 = argmam(P(§t+1|a;,§t,6t))

And the conditional probability of the most-probable expla-
nation 38}, is calculated as the following formulation.

Prob(8ii1)a; = P(3i11laz, 8:,61) U]

= maz(P(841la}, 8, 06t)) 8

We define the most-probable explanation 33, ; as the pre-
dicted next state, and Prob(37, ), is the probability of the
predicted next state when the robot takes a possible action
ar. Using the above formulations we can calculate all of
Prob(8},1)a: which correspond to each a}; € ActionList.

4) Sensor Planning for Localization: Based on the
Prob(s7,1)q~ and sensing cost, the mobile robot can find an
optimal sensing action sequence for the global localization.

The system assumes that the white circles perform all of
the possible action sequences from the robot’s initial pose,
and estimates the gross global localization probabilities of the
white circles using the Bayesian network, when the actions
have finished. We denote the average probability of all of the
white circles to be "AveBelief’, and *Cost’ is defined by the
distance that the circle moved. For example, when the robot
takes a possible action a¥, the AveBelief is calculated in the
following equation.

ZkeK PTOb(g;;-‘,-l)(a;,ISk)
7 ©)
We use Prob(57,1)(az,1s,) t0 denote the predicted global
localization belief of the robot, when the Initial state is 1.5y,
the Bayesian network is given soft evidences of the current
state (S¢), observations (O, O+1), and robot takes a possible
action ay,. The calculation of Prob(8}, ;)(az,1s,) is described
in detail in section V-D.

AveBelief =

0
1—0) x AveBeli —
( ) X Ave ezef+008t
0<b<1

Based on Eq. 10, by taking into account the balance
between AveBelief and cost, the system calculates the
"Integrated Utility’, and selects an optimal action se-
quence for the mobile robot localization based on the
Integrated Utility. The § of Eq. 10 is a parameter for
balancing the AveBelief and Cost.

Utility = (10)

where :



E. Computational Complexity

The computational cost of our sensor planning algorithm
is determined by two factors. One is the Bayesian network
inference, and the other is sensor planning that uses that
Bayesian network inference. The exact inference of a large-
scale Bayesian network is an NP-hard problem[36]. Fortu-
nately, in our research, the number of nodes of our Bayesian
network does not expand with larger environment sizes. So the
environment size does not affect the computational complexity
of the Bayesian network inference. However, the computa-
tional time for finding the optimal sensing actions depends
on the number of cells. The time complexity of an exhaustive
search to depth d is O(D? x E? x K%), where E is the number
of possible states, D is the number of available actions and K
is the number of available observations. The time complexity
of a traditional POMDP solution is also O(D?¢ x E¢x K4)[37],
and looks quite similar to our algorithm. However, since our al-
gorithm decomposes the occupancy grid map into larger cells,
and plans the sensor actions based on those decomposed larger
cells, the search depth d for our sensor planning is smaller than
the d of the occupancy grid based on POMDP planning. So
the computational cost of our proposed hierarchical approach
will be smaller than the cost of occupancy grid-based POMDP
planning.

VI. SIMULATION EXPERIMENTS
A. Particle Clustering

Our system does not perform sensor planning at all times.
Sensor planning starts when the particles converge into clus-
ters. The system checks the averages and variances of the
weights of the particles in all cells and at every resampling
cycle. When the average and the variance exceed certain
thresholds, the system starts to perform particle clustering and
sensor planning. The threshold for particle clustering is an
experiential result. We did not attempt to learn the threshold
from the particles this time, but we may consider it as a task
for future study.

The higher layer starts sensor planning after the particle
clustering. The possible locations of the robot are focused on
the cells with particle clusters. The probabilities of the possible
locations are evaluated by the sum of the particles’ weights in
the cluster. The initial status of the higher layer is illustrated in
Fig. 1(a). The candidate robot poses (white circles) are shown
in the centers of the cells that have clusters, and the orientation
of the robot is obtained from the average of the particles in the
cluster. The probabilities of the clusters are calculated by the
sum of the particles’ weights. The gradation of the cell color
in Fig. 1(a) shows the probability of the robot pose. That is,
the darker intensity corresponds to a higher probability of the
global localization, and the brighter intensity corresponds to a
lower probability.

B. Higher Layer Control for Sensor Planning

The particle filter performs filtering, predicting and smooth-
ing the sensing data. However, it cannot control the actions
of the mobile robot. If we only implement the particle filter

Action Average Probahility (AveBelief)
Go forward 0.8010
Turn left 0.6754
Turn right 0.8630
Go back 0.8652

TABLE |
AVERAGE PROBABILITIES OF ALL OF THE PARTICLE CLUSTERS INFERRED
BY THE BN WHEN THE SYSTEM PERFORMED ONE ACTION.

for localization and do not consider action control, random
sensing actions may cause slow convergence of the particles.
Therefore, to solve this problem, the higher layer is necessary
to improve the efficiency of the localization.

For example, in Fig. 1(a), there are nine white circles that
correspond to nine possible robot poses, and each possible
pose corresponds to an Initial state (see Fig. 3(b)). Initially,
the system assumes that all circles perform ’Step one’. As
shown in Fig. 3, in this step, the robot has four possible ac-
tions. The average probabilities of the nine circles (AveBelief)
are shown in Table. I. We can see that the AveBelief is the
largest, if the robot takes the action go back. If the largest
AveBelie f does not exceed a certain threshold, the system has
to perform the *Step two’ or more, until it finds an AveBelief
that is larger than the threshold. In our experiments, we
used 0.9 for the threshold. If the system finds a AveBelief
that is larger than the threshold, an optimal action sequence
will be selected by calculating the Integrated Utility us-
ing the Eq. 10. The optimal action sequence must hold a
largest Integrated Utility. Since, in the Table I, the largest
AveBelief does not exceed the threshold (0.9), the system has
to perform Step two. The system calculates the AveBeliefs
of the nine circles when they have finished “Step one and
Step two”(see Fig. 3). The calculated results are shown in
Table. Il. We can see that the AveBelief is the largest when
the nine circles performed ’turn left’ and ’go forward’,
and the largest AveBelief (0.9460) exceeds the threshold
(0.9). In Table Il, we can find only one AwveBelief that
exceeds the threshold. So the action sequence, “turn left
then go forward”, will be the optimal action sequence for
localization. The simulation results in Fig. 2 show that our
sensor planning is effective for the global localization.

VII. ACTUAL ROBOT EXPERIMENTS

As shown in Fig.4, we conducted actual robot experiments
on sensor planning for mobile robot localization. The sub-
figures on the left in Fig.4 show the real scenario of these
experiments. Two laser range sensors were mounted on the
mobile robot (Pioneer 111), and sensor planning and local-
ization calculations were conducted using a laptop computer
(IBM X41). The environment for the mobile robot was two
large rooms and two small rooms, and we measured the real
environment and built a map (right-side sub-figure in Fig.4)
using the measured data.

Initially, the particles were generated based on uniform
distribution (see Fig.4(a)). The particles of the environment
map represent the possible poses of the mobile robot. When



Action 1 Action 2 Average Probability
(AveBelief)
Go forward | go forward 0.8862
Go forward turn left 0.8558
Go forward | turn right 0.8010
Turn left go forward 0.9460
Turn left turn left 0.6754
Turn left turn right 0.7623
Turn right | go forward 0.8803
Turn right turn left 0.8761
Turn right turn right 0.8735
Go back go forward 0.7704
Go back turn left 0.8091
Go back turn right 0.7704
TABLE Il

AVERAGE PROBABILITIES OF ALL OF PARTICLE CLUSTERS INFERRED BY
THE BN WHEN THE SYSTEM PERFORMED TWO ACTIONS.

the robot performed some random sensing actions, the parti-
cles converged into clusters (Fig.4(b)). Based on the method
described in section VI1I-A, our system detected these particle
clusters (see Fig.4(c)). The circles in the right-side sub-figure
(Fig.4(c)) show the location of the particle clusters. As shown
in Fig.4(c), when the robot faces an intersection, it has to
determine an action for localization. The sensor planner of the
higher layer is run at this stage. Through sensor planning by
taking into account the trade-off between global localization
beliefs and sensing cost, the system obtains the optimal
sensing action sequence for localization (see Fig.4(d)). The
particles converge into one cluster completely when the mobile
robot completes the optimal sensing actions. Our experimental
results demonstrate the effectiveness of our proposed system.

VIIl. DiscussioN AND CONCLUSION
A. Discussion of Complex Environment

In Section |1, we have described methods for map building
and smaller cell selection. Using these semiautomatic methods,
we can build and decompose a more complicated map.

Our proposed sensor planning algorithm does not depend
on the shape of the map and the objects. If the environment is
more complex, the sensor data of every decomposed cell will
be more ambiguous than the rectangular map of our system.
However, in K-means classification, the classified results give
us only the initial probabilities of the robot localization, and
the ambiguity of the localization will be reduced by the gross
localization step using the Bayesian network and the lower
layer, i.e., particle filter. We use the K-means algorithm to
classify the laser data, then the robot calculates the distance
between the observed laser data and the center point of each
classified class. The distances are normalized to probability,
and the probability is the initial probability of the robot pose.
The initial probability is input into the Bayesian network as
soft evidence (see section V-C). Thus, while our proposed
algorithm allows the classification results to have ambiguity,
the ambiguity will be reduced and revised by the gross local-
ization step using the Bayesian network. Since this ambiguous
classification does not effect the sensor planning and since
the map construction (map building and cell decomposition)

is a semiautomatic process, our proposed algorithm can deal
effectively with more complex environments.

B. Conclusion

This paper presented our hierarchical approach for solving
sensor planning for the global localization of a mobile robot.
The environment is represented by the integration of a large
cell based topological map and an occupancy grid map (grid
size: 0.05 m). Our system consists of two subsystems: a lower
layer and a higher layer. The lower layer uses a particle
filter to evaluate the posterior probability of localization based
on the occupancy grid map. When the particles converge
into clusters, the higher layer starts particle clustering and
sensor planning to generate an optimal sensing action se-
quence for the localization based on the topological map.
The higher layer uses a Bayesian network that represents
contextual relationships between the geometrical features of
the local environment, the sensing actions and the global
localization beliefs. The sensor planning generates optimal
action sequences by taking into account both the localization
belief and the sensing cost. We demonstrated the effectiveness
of our proposed approach in simulations and actual robot
experiments. Further improvements in actual environments are
planned for future study.
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