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Abstract

We propose a new method of sensor planning for
mobile robot localization using Bayesian network in-
ference. Since we can model causal relations between
sttuations of the robot’s behavior and sensing events as
nodes of a Bayesian network, we can use the inference
of the network for dealing with uncertainty in sensor
planning and thus derive appropriate sensing actions.

In this system we employ a multi-layered-behavior
architecture for navigation and localization. This ar-
chitecture effectively combines mapping of local sensor
mformation and the inference via a Bayesian network
for sensor planning. The mobile robot recognizes the
local sensor patterns for localization and navigation
using a learned regression function. Since the environ-
ment may change during the navigation and the sensor
capability has limitations in the real world, the mobile
robot actively gathers sensor information to construct
and reconstruct a Bayesian network, then derives an
appropriate sensing action which mazimizes a utility
function based on inference of the reconstructed net-
work. The utility function takes into account belief
of the localization and the sensing cost. We have con-
ducted experiments to validate the sensor planning sys-
tem using a mobile robot stmulator.

1 Introduction

In a complex environment, how to localize a mo-
bile robot on its way and to navigate autonomously
towards a goal is a very fascinating problem to many
researchers. Until now, mobile robots have navigated
mainly using a global map constructed from sensor
information. A mobile robot localizes itself based on
matching local or global sensor information to the map
then decides its behavior subsequently based on the
matching results. However, in the real world, since
many uncertainty factors adversely affect navigation
of robots, it i1s difficult to use map-based methods.

Therefore, we need an approach to cope with such
uncertainty factors. In this paper, we take Bayesian
network approach. The field of Bayesian networks and
graphical models has grown in recent years and much
progress has been made in the theoretical analysis as
well as its applications to real problems [1][2][3]. How-
ever, less progress has been made in its application to
sensor planning of robots. Bayesian networks allow us
to represent causal relations among situations of robot
sensing and the obtained data or evidences in a natu-
ral manner and to quantitatively analyze beliefs about
the situations. Consequently, the approach provides
a sound basis for dealing with uncertainty in sensor
planning.

2 Previous Studies

Tani [4] developed a mobile robot system which fo-
cuses on local sensor information and directly maps
the information to motor command space. Although
the method allows the robot to navigate along a pre-
viously determined path, it has no skill for recogniz-
ing and distinguishing two (or more) sets of patterns
that hold the same sensor information. Thrun [5] pro-
posed localization of a mobile robot using Bayesian
analysis of the probabilistic belief. Asoh et al. [6] de-
veloped a mobile robot system which navigates using
a prior-designed Bayesian network. The system re-
duces uncertainty in the localization by conversation
with a human using a speech recognition subsystem.
However, these methods have not implemented sensor
planning mechanisms to efficiently gather information
of the environment. As for sensor planning, Miura et
al. [7] proposed a method for vision-motion planning
of a mobile robot under vision uncertainty and lim-
ited computational resource though they did not use
Bayesian networks. Rimey et al. [8] used Bayesian
networks to recognize table setting, and plan the cam-
era’s movement based on maximum expected utility
decision rules.
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Figure 1: The trajectory and its associated sensor data
flow of a mobile robot
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Figure 2: Multi-layered-behavior architecture for sen-
sor planning

In this paper we propose a sensor planning system
which avoids error of global measurement, maps lim-
ited sensor information to motor commands, and in-
creases the belief of localization based on Bayesian
network inference.

3 Task Setting

We would like to describe our main task setting of
this paper. As shown in Fig 1, a mobile robot learns
the local sensor information (C, E, D or B), so that
it may navigate from a “start’ point to a crossing D
and arrive at a goal E while door (at a crossing B) is
closed. However when door (at the crossing B) is open
incidentally, the local sensing information at B and D
will be identical. Therefore the mobile robot can not
distinguish which crossing is correct to navigate itself
to the goal E only based on the previously learned
model of the local sensing. That is, if there are some
crossings with the same local sensing information in a
navigation path, how to recognize which is “true D”,
i.e., which crossing could guide the robot to the goal
E? To solve this problem, we developed a system to
infer the belief of the D.

4 Basic concept of the system

To cope with above problems, we propose an archi-
tecture of multi-layered-behavior to plan the sensor’s
action to localize a mobile robot. This architecture in-
volves low level action control (LLAC) and high level

inference (HLI) capabilities. Figure 2 shows the ar-
chitecture of our system. The low level action control
(LLAC) identifies local sensor patterns of a limited
sensor information space and directly maps these pat-
terns to the motor command space. However, since
the sensor capability is limited in the real-world and
the patterns may change depending on the environ-
ment, it is difficult to localize and navigate the robot
correctly to the goal only by this control level. There-
fore, the system employs high level inference (HLI) to
estimate the robot’s position based on causal relations
of local sensor information nodes. Identified local sen-
sor patterns are added into a group of sensing nodes,
then the system constructs/reconstructs these sensing
nodes into a Bayesian network.
Our method has the following key features:

o Our localization method differs from traditional
methods in that we not only focus on local sensor
information, but also perform sensor planning which
takes into account causal relations of the local sensor
information for the localization.

o In order to decrease uncertainty in localization caused
by faulty sensor information, we attempt to actively
gather information of the environment and to map
these information nodes into a Bayesian network,
then use them for probabilistic reasoning to correctly
localize the robot.

o Initially the system does not have a complete prior-
built Bayesian network. A robot gathers sensor infor-
mation, creates nodes, and obtains the prior probabil-
ities (conditional probabilities) automatically. Then
the system compares the integrated utility of every
sensing node in the Bayesian network. Finally, a con-
figuration of the Bayesian network for efficient local-
ization is obtained.

5 The Prototype System

We use a mobile robot (B14, Real World Interface)
shown in Fig. 1. The mobile robot is equipped with a
Pentium CPU, 16 sonar sensors, a color CCD camera,
and other sensors. A desktop PC running Linux is
used for the server of the Bayesian network inference
(HLI), and it transfers the calculated belief to the
robot via a socket stream.

For the software in our prototype system, we im-
plemented the Bayesian networks in C++ using the
source code of Ref.[9]. The system calls the B14’s soft-
ware library (Bee Soft) to drive the mobile robot. We
implemented a three-layered Back Propagation Neu-
ral Network (BPNN) to navigate the mobile robot by
the low level action control (LLAC).



6 Implementation of LLAC

The mobile robot is basically driven by a potential
method. Figure 1 (left) shows a trajectory of the robot
in a workspace. Fig.1 (right) shows a time sequence
of the corresponding sonar sensor data as a gray level
image. The vertical axis represents the time and the
eight pixels along the horizontal slice represent a set
of sonar sensor data in which a darker (brighter) in-
tensity level corresponds to a larger (smaller) sonar
distance value, respectively. On a road with no cross-
ings, a horizontal slice of the image has only one dark-
est point, the system searches for the maximum value
in every glance of the sonar sensors, and tracks the
angular direction of the largest distance value.

When a mobile robot comes to a crossing, the hori-
zontal slice of the image will have two or more darkest
points. We evaluate the distribution of every tempo-
rally sliced data to search the crossing. The robot’s
action i1s determined by low level action control at
the crossing. We employ a three-layered Back Prop-
agation Neural Network (BPNN) to model the filter
function 7 and map the 8-direction sonar data of
the front of the mobile robot into sensor feature space
or action commands (translation and rotation) space
at crossings (like L, + ,T ) of the path.

7 Implementation of HLI

7.1 Active sensing for localization using
Bayesian network inference

As shown in Fig. 1, the belief of position D at the
crossings (B or D) can be obtained as the following
formalization.

Bel(D) =P (D If) &)
where Bel(D) — the belief of position D

at the crossings B or D
P (D |f) — the posterior probability

supported by sensor feature f only.

Since the local sensor information of B is identical
with that of D, the mobile robot can not localize it-
self only by the local sensing pattern only by Eq.(1),
while it runs from the “Start” point to the crossing D
directly.

To overcome the difficulty and search the “true D”,
the mobile robot performs active sensing as shown by
the solid line trajectory in Fig.1l. This time we can
obtain the belief of D at the crossings (B or D) from
the following function:

Bel(D) =P (D|f,s1,..,5n) (2)
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Figure 3: Construction and reconstruction of the
Bayesian network for sensor planning

Note that si,...,s, are the sensing nodes generated
by active sensing. These sensing nodes are obtained
from various sensors (for instance, range sensor, vi-
sion sensor, acoustic sensor, etc.) and difference in
the position of feature along the path. We construct
the Bayesian network as shown in Fig.3(b) to calcu-
late the Bel(D) at the crossings (B or D). Sens-
ing nodes propagate the evidences backward to the
node D. Bel(D) of the crossing D is increased while
Bel(D) of the crossing B is decreased.

7.2 Reconstruction of the Bayesian net-
work for sensor planning

We can obtain the Bel(D) from Eq. (2), however
we must note that we have not considered the sens-
ing cost. By taking into account the balance between
belief and the sensing cost, we propose an integrated
utility function and a reconstruction algorithm of the
Bayesian network for sensor planning.

7.2.1 Reconstruction Algorithm

We define an integrated utility (IU) function (Eq. 3)
which we can adjust priority of the two criteria (belief
and sensing cost). Depending on the balance between
sensing cost and belief, we obtain different planning
results of robot behavior for localization.

Costi
Zi COSti

ABell = |0.5 — Be11| (4)

) ()

IUi:tXABeli+(l—t)X(1—

where

IU; denotes the integrated utility (IU) value of
sensing node i, Cost; denotes the sensing cost of sens-
ing node i, Bel; denotes the Bayesian network’s belief
while the mobile robot just obtains the evidence of ac-
tive sensing ¢ only, and ABel; represents certainty of
the belief of sensing node ¢ which contributes to the
Bayesian network. The maximum value of ABel; is
0.5 when Bel; = 0 or 1 and the minimum is 0 when
Bel; = 0.5. TU value will increase along with increas-
ing belief and decrease along with increasing sensing



e root

(Local network k)

crossing 1 cee crossing N

Figure 4: Local network of Bayesian network. Every
local network is constructed by each crossing’s active
sensing nodes. Evidence of these sensing nodes will
be propagated to root node, and using these poste-
rior probability to decide if this crossing can guide the
mobile robot to the goal.

cost. We use a parameter ¢ (0 < ¢ < 1) to balance
sensing cost and belief.

Before presenting of our new reconstruction algo-
rithm, we would like to describe a concept of “local
Bayesian network”. Since the mobile robot must infer
which crossing could guide itself to the goal based on
the beliefs of sensing nodes (or sensing node sets) of
the crossing, we associate the sensing nodes of each
crossing to a “local network”. The mobile robot esti-
mates the probability of every crossing using this “lo-
cal network”. The reconstruction will be performed
in every “local network”. The Figure 4 illustrates the
concept.

The reconstruction algorithm has two steps, STEP
(1) completes the refining process of each local net-
work. In other words, Bayesian network will be re-
constructed from every local network (active sensing
nodes of every crossing) using IU function. STEP
(2) combines local networks to the global Bayesian
network.

Reconstruction Algorithm:

1. Initialization of Bayesian network :
The mobile robot performs active sensing at every
crossing, and constructs an original Bayesian network
as Figure 4 using all of these sensing nodes.

2. STEP (1): Refine the local network.
For example, the system refine the local network k
(the sensing nodes of a crossing k) of Fig.4 by the
following algorithm:

o Check the ABel; of every terminal sensing node,
remove the node which satisfies ABel; < ©.
(© (0 < ® < 0.5) is a threshold of ABel; < ©.
When ABel; < ©, we regard the sensing node
has no capability to localize the mobile robot.)

e IF the number of survived nodes (ABel; > ©)
isn’t zero,
THEN sort the survived sensing nodes accord-
ing to their IU values,
IUL; = mazqa, {IU}, (94 denotes the sensing
nodes group of crossing k.)
Save this sensing node that has IUy;, and re-
move the other nodes.

¢ ELSE execute “combining process” to
combine the sensing nodes to improve belief un-
til the sensing node set has enough A Bel to dis-
tinguish the other crossings.

3. STEP (2): Combine all of the local networks
to construct the global Bayesian network :

(a) Refine the every local network (every crossing)

based on STEP (1) algorithm.

(b) Combine the local networks to reconstruct a new
global Bayesian network.

(c) Finally, compare the terminal nodes (or termi-
nal sensing node sets combined by “combining
process”), if they have exclusive relation,! then
remove one side, and save the others.

4. Combining Process of local network :

(a) Generate all combinations of sensing nodes in a
local network,

(b) Calculate the IU value of the combined sensing
node sets which has ABel(..;y > ©, then sort
these node sets based on IU value.

(c) Leave the sensing node set j, which has
IU(set j) = maz {IUet}, and remove the other
node sets.

8 Experiments

We conducted experiments to validate the effective-
ness of our system using a mobile robot simulator.
8.1 Assumptions of experiments

To simplify the calculation, our experiments have
the following assumptions:

1. The parents-children relations are determined before-

hand.

2. Prior probabilistic distribution (conditional probabil-
ity table) of sensing nodes is acquired by measuring
the frequencies of the events.

3. We omit the uncertainty of local moving distance of
the mobile robot. The mobile robot may exactly es-
timate the local moving distance between each land-
mark, and compare the every landmark’s local po-
sition and other sensing information to make CPTs
(conditional probability tables) of the all of sensing
nodes while it is moving in the workspace.

1We define the exclusive relation as S_a = S;. If robot ob-

tained an evidence Sg, an evidence S; will be ignored. For
example the relation of Sy and Sg in Fig.1.
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Figure 5: The mobile robot navigated following the
solid line trajectory using inference of reconstructed
Bayesain network. (up) ¢ = 1; (down) ¢ = 0.33.

8.2 Experiment 1

Firstly, we made an office environment (Figure 5)
that has three crossings to validate our reconstruction
algorithm. If the mobile robot has local sensing only,
it can not recognize D which guides the robot to the
goal E. The mobile robot will turn left at each crossing
(B1, B2 or D) to attempt to search the goal E. The
search of each crossing will be finished while the mo-
bile robot perceives the local environments is Cq or
Co (T). Then the mobile robot turns back to gather
the active sensing nodes by some tutorial commands
given by human, and records all of sensing nodes (we
can obtain sonar distance information only). To dis-
tinguish the D from B1 (and B2) and construct the
conditional probability table (CPT) of every sensing
node, the mobile robot turns back at a goal E and
records the sensing nodes. The original Bayesian net-
work is constructed as Figure 6(a).

Consequently, we will reconstruct the original
Bayesian network using the reconstuction algorithm.
We can change the parameter ¢ of IU function (Eq.3),
the planed active sensing action will be different de-
pending on the value of ¢. Figure 5 (up) shows the
active sensing trajectory for localization of the mobile
robot when the parameter ¢ = 1. In this case, the
mobile robot only focuses on the belief but does not
consider sensing cost. Reconstruction process and ev-
ery sensing nodes’s IU value and belief is illustrated
at Figure 6 (b) and (¢). When ¢ = 0.33, we obtain
the results of IU value of sensing nodes as Figure 7
(c). After the reconstruction process based on the ITU
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Figure 6: Reconstruction of the Bayesian network in
the experiment 1 while ¢ = 1.
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Figure 7: Reconstruction of the Bayesian network in
the experiment 1 while ¢ = (.33.

value, we will acquire a new reconstructed Bayesian
network (Figure 7 (b)). In this case, sensing action of
the mobile robot will be planned as shown in Figure
5 (down).

As shown in the results, the proposed algorithm
works successfully and the sensing behavior for local-
ization varies depending on the parameter ¢.

8.3 Experiment 2

How should we construct and reconstruct a hier-
archical Bayesian network which has hidden sensing
nodes, states and multiple sensor information? Here,
we build a more complex environment to describe the
problem as shown in Figure 8. In the same way as the
previous experiments, the mobile robot initially nav-
igates by LLAC, and gathers information to make
CTPs of the sensing nodes and an original Bayesian
network (Figure 9 (a))

In Fig. 8, there are two hidden crossings (Fo, F3)
after passing crossings Bo and D, respectively. We
assume some hidden states (Ho and Hg) exist in the
Bayesian network. Ho (or Hg) denotes the sensing
node sets of the hidden crossings Fo (or F3), we rep-
resent the causal relation between sensing nodes and
hidden state as shown in Fig. 9 (a) ( Cg and Ss’s
parent is Ho; C4 and S5’s parent is Hg). The sensed
evidence will be propagated from terminal nodes to
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Figure 8: (up) The mobile robot navigates itself by
LLAC and some tutorial commands to search the
goal (E) and gathers the sensor information actively,
then compares the difference of every crossing to con-
struct the CPTs of every sensing node and original
Bayesian network. (down) The mobile robot is navi-
gated following the solid line trajectory using inference
of reconstructed Bayesian network (¢ = 0.35).

hidden state node (Ho or Hg)), then D’s belief will
be updated by propagation of hidden node’s proba-
bility. When the ¢ value (Fig. 9 (¢)) of IU function
is 0.35, the original Bayesian network (Fig. 9 (a)) is
reconstructed as Fig. 9 (b). Fig. 8 (down) shows the
planned path for localization of the mobile robot.

The results of the experiment show that our system
effectively localize the mobile robot and allows to na-
givate to the goal in the complex environments using
the hierarchical Bayesian network.

9 Conclusions
We proposed a new method of sensor planning for
mobile robot localization using Bayesian network in-
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Figure 9: Reconstruction of the Bayesian network
which has hidden states.

ference. We can model causal relations between situa-
tions of a robot’s behavior and sensing events as nodes
of a Bayesian network and use the inference via the
network for dealing with uncertainty in sensor plan-
ning. We employed a multi-layered-behavior architec-
ture for navigation and localization. Since the envi-
ronment may change during the navigation and sensor
capability has limitations in the real world, the mobile
robot actively gathers sensor information to construct
and reconstruct a Bayesian network, then derives an
appropriate sensing action which maximizes a utility
function based on inference of the reconstructed net-
work. The utility function takes into account the bal-
ance between belief of the localization and the sensing
cost. The experimental results of the sensor planning
for a mobile robot demonstrate the usefulness of the
proposed system.

Our future plan includes the following: (1) valida-
tion of the system using a real robot, (2) attempt to
learn structure of Bayesian network from CPTs (Con-
ditional Probability Tables) of active sensing nodes.
(3) validate our concepts using other applications.
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