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Abstract

In this paper we propose a novel method of sen-
sor planning for a mobile robot localization problem.
We represent causal relation between local sensing
results, actions, and belief of the global localization
using a Bayesian network. Initially, the structure
of the Bayesian network is learned from the com-
plete data of the environment using K2 algorithm
combined with GA (genetic algorithm). In the exe-
cution phase, when the robot is kidnapped to some
place, it plans an optimal sensing action by taking
into account the trade-o� between the sensing cost
and the global localization belief which is obtained
by inference in the Bayesian network. We have val-
idated the learning and planning algorithm by sim-
ulation experiments in an oÆce environment.

1 Introduction

In this paper, we propose a sensor planning method
for mobile robot localization. Initially, we represent
causal relations between local sensing results, actions,
and belief of the global localization in a Bayesian net-
work (BN) structure. The BN structure, as well as
the parameters, is learned automatically from the en-
vironment data using K2 algorithm combined with GA
(genetic algorithm). In the execution phase, when the
robot is kidnapped to some place, it plans an optimal
sensing action by taking into account the trade-o� be-
tween the sensing cost and the global localization belief
which is obtained by inference in the BN [1].

2 Environment Information Gathering

and BN Con�guration

2.1 Path for Environment Information

Gathering

We performed the simulation experiments in an oÆce
environment (Fig. 9). Initially, to obtain complete en-
vironment information, the robot must navigate in all
of the corridors and intersections. We employ a frame-
work of the Chinese postman problem [2]. The Chinese
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Figure 1: (left) A graph to represent the topology
of the environment. (right) A path (from A to A)
obtained as a solution of Chinese postman problem.

Figure 2: Mapping the environment information
of two neighboring corridors into nodes of BN .

postman problem requires �nding the shortest tour in a
graph which visits every edge at least once. As shown
in Fig. 1, we represent the topology of the environment
as a graph and search a path from A to A using the
next node algorithm. Then the robot navigates in all
corridors and intersections along the path and gathers
the environment information to be used for localization
tasks.

2.2 Environment Representation and BN

Con�guration

We de�ne a segment (Sg) as the environment infor-
mation of a corridor between two neighboring inter-
sections. One segment involves four kinds of informa-
tion:(1)Two intersection labels,(2) Landmarks on both
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sides of the corridor between two intersections,(3) Ge-
ometric features of the intersections sensed when the
robot enters the intersections,(4)Action taken by the
robot when it enters the corridor.

In our system, we call the environment information of
two neighboring corridors an environment information

set. The information of every environment information

set (for example, label of an intersection, geometrical
feature of an intersection, etc.) corresponds to a value
of nodes in BN .

3 Learning BN Structure from Data

BN is a directed acyclic graph that represents depen-
dencies between probabilistic variables. An arc between
two nodes of BN represents the causal relation between
the nodes. However, it is often diÆcult to determine
the casual relation among nodes. In our localization
tasks, we usually do not know which landmark has de-
pendency with the other nodes, so we take a BN struc-
ture learning approach instead of designing the network
structure manually.

3.1 K2 Algorithm Combined with GA

We apply a structure search method based on Bayesian
score, named the K2 algorithm [4], to learn the causal
relation between local environment information, robot
action, and global localization. The Bayesian score is a
joint probability P (Bs; D) between BN structure (Bs)
and database (D). The K2 algorithm is a greedy search
algorithm. Ref[4] describes that the search space is too
huge to evaluate all of the possible structures. To re-
duce the search space, the K2 algorithm uses a con-
straint of ordering of nodes (i.e., the causal attributes
of a node should appear earlier in the order). However,
it is often diÆcult to determine the order.

In our system, we employ a genetic algorithm(GA) to
search the best ordering as described in Ref. [5]. Using
this ordering, K2 learns the best BN structure from
the data. Then the Bayesian score of K2 gives a �tness
value to GA. The combination of GA and K2 iterates
until the average �tness is improved no further.

3.2 Example of BN Structure Learning

Using the training database, we attempt to learn a
structure of BN . The population size of the GA is 80
and the algorithm uses crossover and mutation opera-
tions. Figure 3 shows the convergence of �tness value
with 100 generations. The dashed line and solid line in
the �gure show the average and the best �tness scores
of each generation, respectively. By combining the K2
algorithm with the GA search, we can obtain a sub-

optimal ordering of the nodes and a semi-optimal BN
structure as shown in Fig. 4.
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Figure 3: The results of ordering searching by GA
and Bayesian score

Figure 4: Learned BN 's structure by K2 and GA

4 Sensor Planning for Localization

4.1 Inference for Localization

The robot starts navigation from an unknown posi-
tion without sensor planning. The navigation basi-
cally uses a potential method in a corridor. The
robot gathers sensing information events, including
landmarks and geometric features of intersections, in
the current corridor. Then the information events
are given to the BN as evidences to infer global lo-
calization, i.e., which corridor the robot has sensed.
The probability of the corridor's label is calculated as
P (Head;Mid; Tailjobtained sensing event) using BN .

We de�ne belief of the global localization (TolBef ) as
follows:

TolBef = 0:5� (max(P (Head))+max(P (Mid))) (1)

where max(P (Head)) and max(P (Mid)) are the max-
imum values of the probability of node Head andMid,
respectively. P (Head) and P (Mid) are calculated by
the BN inference.

If TolBef � thd1, the system terminates the localiza-
tion process. Because in this case the robot can es-



timate the labels of the corridors only by using the
current environment information, there is no need to
perform sensor planning. Otherwise (TolBef < thd1),
the robot has to move to the next corridor to perform
active sensing. Therefore, the sensor planner selects an
optimal sensing action for the localization.

Since the BN of our system is not a tree structure but
has loops as shown in Fig. 4, we use the Junction tree

algorithm [1] to infer probabilities of the nodes.

4.2 Prediction for Sensor Planning

The sensor planner consists of two processes: (1) pre-
diction and (2) planning. The prediction process pre-
dicts some possible actions and sensing information ex-
pected to be obtained by these actions. The prediction
algorithm has the following two steps:

(1) The �rst step is to search data cases, i.e., values of
the node Cn, in the database, whose probabilitis
are not zeros based on the sensing event obtained
from the just-sensed corridor1. That is, the sys-
tem stores the node Cn's values, which satisfy the
following condition, in a list cnl = (cnl1; cnl2; :::).

P (Cnjobtained sensing information) 6= 0;

Based on the results, we can estimate which data
case in the recorded sensing information database
is closer to the obtained sensing information.

(2) The second step is to predict possible actions (PA)
and sensor information (SI)2 based on the ob-
tained sensing information (OSI) and the esti-
mated Cn values. The prediction is performed
using the following probabilities:

P (PAjcnl; OSI) > thd2 (a)

P (SIjPA;cnl; OSI) > thd2 (b)

If the values of (a) and (b) exceed a certain thresh-
old thd2, we save the possible actions in a list
actlist, and save the predicted sensor information
in a matrix Msen.

4.3 Sensor Planning Procedure

Through the prediction step, the system obtains
actlist, a list of possible actions and also a
matrix of predicted sensing information Msen =
(sn1; sn2; :::; snn)

T , Each element of Msen represents
a predicted sensor information list to be obtained by
a possible action (the element of actlist). Each pre-
dicted sensor information list of Msen is sorted in the
order of sensing cost, i.e. the distance from the current
intersection to the location of the sensor information.

1The prediction and planning processes are performed
when the robot is in the middle intersection.

2It includes landmarks and intersection's geometric fea-
tures expected to be perceived when the robot takes the
actions

Consequently, the sensor planning process selects an
optimal action from actlist which allows the robot to
acquire enough sensing events to decrease ambiguity
of the global localization belief by taking into account
the trade-o� between the sensing cost and the global
localization belief.

For example, an actlist and a Msen are shown in Fig.
5. The possible actions are \action1, action2, action3",
and the integers on the right side of Fig. 5 represent
expected sensor information to be obtained by the ac-
tions. In the Fig. 5, each row of the Msen is one set
of the predicted sensor information when taking the ac-
tion on the left side. Every row of theMsen is sorted in
ascending order of the sensing cost, i.e., the sensing cost
of the right entry is larger than that of the left. In the
evaluation process, we use the elements of the Msen

and the possible actions to estimate the labels of the
intersections, and calculate the sensing cost. Since the
robot uses sensing information of a set of two neighbor-
ing corridors, the TolBef should be de�ned as the sum
of the maximum probabilities of the three intersection
labels.

TolBef = (1=3) � (max(P (Head))+max(P (Mid))

+max(P (Tail))) (2)

Using the above possible actions and predicted sensor
information, the system performs the sensor planning
which has the following three steps:

(1) The �rst step is to use the already-obtained sens-
ing information, the possible action, and sensing
information to be obtained by the action, to infer
(TolBef ), the belief of the global localization. In
this step, we must evaluate every action and ev-
ery set of sensor information (every row of Msen

in Fig. 5). For example, when we evaluate \ac-
tion1" of Fig. 5 and the corresponding sensor in-
formation of the three rows, the procedures are as
follows ((a)�(d)):

(a) The system creates an empty list (SenEvn),
and pushes the left-most element of the �rst
row's sensor information into SenEvn.

(b) Using the SenEvn, \action1" and obtained
sensor information to estimate the TolBef
based on Eq.2 and BN .

(c) IF TolBef > thd3

OR

all of the elements in this row

have been pushed into SenEvn,

THEN evaluation of the first

row's sensor information

is finished.

ELSE

THEN the next element of the

first row's sensor inf-



ormation is pushed into

SenEvn. GOTO b)

END IF

(d) Using the procedure (a)�(c), the system also
evaluates the other two row's sensor informa-
tion corresponding to \action1". After the
above procedures are �nished, the number of
sensor information sets (count), which have
beliefs of the localization TolBef > thd33

will be recorded. (count) represents to what
degree the robot could determine the location
when it takes that action.

(2) The system sums up the sensing cost of every row's
sensor information, which is used in the �rst step
(Cost), and also sums up the Cost of each row
(sensing information sets) which satisfy TolBef >
thd3.

(3) Selects an optimal action by an eÆciency crite-

rion, i.e., an action which has the largest count
and lower sensing cost.

For example, in the Fig. 5, each count of \action1" and
\action3" is \3", and the count of \action2" is \1", so
the optimal action can be selected from "action1" and
\action3". Since the sensing cost of \action3" is lower
than that of \action1", in this case, the optimal action
should be \action3".

4.4 Speedup of the Sensor Planning

We explain the method using the case of Fig. 5.

(i) We compare the sensing information of the Msen

that has the same action from the left side to right
side. For example, the action1 corresponds to
three sets of sensing information. In the �rst row
of the sensing information sets (the row with R1
of Fig. 5), since the �rst element of rows R2 and
R3 are 00200, if we get only the �rst sensing infor-
mation 00100 of row R1, the system can distinguish
the sensor information (row R1) from the other
two sets of sensor information (rows R2 and R3)
which have the same action (action1). Of course,
we can also use more sensing information of row
R1, but taking into account the sensing cost, us-
ing only the �rst sensing information, 00100, is more
eÆcient.

(ii) We must test the TolBef (by Eq.2) using the se-
lected sensing information (00100) and its action,
\action1". If TolBef > thd3, we consider that
the �rst sensing information (00100) of row R1 ex-
pected by the \action1" is suÆcient to uniquely
determine a location. Otherwise, we must extend

3Since TolBef > thd3 means the robot can uniquely de-
termine three intersections' labels (entrance, middle, and
exit intersection), in other words, the robot can determine
its global location by \action1" and the �rst row's sensor
information.
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Figure 5: An optimal action is determined by
comparing the sensing information's local distance
and geometric feature. The integer represents the
sensing information. The numbers from left to
right are values of mt1, mt2, and Tf , respectively.
Action1; action2; action3 are values of a2.

sensing information from its right side 4 and test
the TolBef until the condition TolBef > thd3 is
satis�ed.

(iii) Using steps (i) and (ii), we obtain the narrowest

sensing range to distinguish the other sensing in-
formation sets which is shown in the gray region
(before testing the TolBef) with the same action.
If there are some sensing information sets, cor-
responding to the same action, which are identi-
cal, we cannot distinguish the information sets and
cannot determine a location uniquely as shown in
Fig. 5 by the black region.

5 Experiments

Using the above learning and planning algorithm, we
performed simulation experiments in an oÆce environ-
ment (Fig. 6). We implemented the BN learning and
inference in a MATLAB BN Toolbox[6]. Note that we
assume that the length of corridors F ! G,E ! H
and J ! I is longer than the other corridors. In Fig.
6,8 and 9, the real numbers in parentheses, the num-
bers with black squares, and the numbers with hatched
squares represent the probabilities of the nodes Tail,

Mid, Head, respectively. The thresholds of the simula-
tion experiments are de�ned as thd1 = 0:9, thd2 = 0:9,
and thd3 = 0:9.

5.1 Inference for Localization

Initially, the robot starts from an unknown position of
the environment. As shown in Fig. 6(a), without loss

4For example, in row R1, if 00100 is not suÆcient, we must
add the right side of the elements, 00200 or 002; 200.



Figure 6: Global localization using BN inference

of generality, we assume the robot starts from an in-
tersection D. After �nishing sensing of the corridors,
the robot's global localization beliefs are calculated by
Eq.1. The probabilities of Head and Mid are inferred
using the learned BN and the sensor information of
landmarks (mh1; mh2) and geometric feature Tf of the
intersection. The sensor information which the robot
obtained from corridors D ! C is information of two
landmarks, mh1; mh2, and the geometrical feature of
intersection C. For example, information of two land-
marks is denoted by number \2", and the geometri-
cal feature is denoted by \>". Hence, the conditional
probability of the node \Head", \Mid" is calculated as
follows:

P (Head;Midjmh1 = 2; mh2 = 2; T f =00 >00)

The results of the above conditional probability are
shown in Table 1. Among the values (i.e., labels) of the
nodes \Head" and \Mid", D and C take the maximum
probabilities. Based on Eq.1, the global localization
belief is calculated as TolBef = 0:5 � (1:0 + 1:0)= 1:0.
Since TolBef > thd1, the start point and current posi-
tion are determined as \D" and \C", respectively, and
the global localization is determined. The experiment
shows if the sensor information is suÆcient, the robot
can localize itself using the BN inference by the sensor
information of only one corridor, and so sensor planning
is not necessary.

5.2 Prediction for Sensor Planning

However, if the sensor information obtained from the
just sensed corridor is insuÆcient, the robot has to per-
form active sensing to gather more sensor information
to localize itself. In case of Fig. 9, the robot starts
from intersection D (of course, the robot initially does
not know its global position) and moves to intersection
K, and the obtained sensing information is landmarks
mh1, mh2 and geometric feature Mf of the intersec-
tion. We use \1" and \2" to denote the landmarks mh1

nodes probability of the intersection's labels

A B C D E F G H I J

Head 0 0 0 1.0 0 0 0 0 0 0

Mid 0 0 1.0 0 0 0 0 0 0 0

K L

Head 0 0

Mid 0 0

Table 1: The inferred probabilities of the nodes
Head and Mid in Fig.7(a).

nodes probability of the intersection's labels

A B C D E F G H

Head 0 0 0 1 0 0 0 0

Mid .5714 0 0 0 0 0 0 0

I J K L

Head 0 0 0 0

Mid 0 0 .4286 0

Table 2: The inferred probabilities of the node
Head and Mid in Fig. 10(a).

and mh2, respectively, and we denote geometric feature
Mf of the intersection by \>". Using this sensor infor-
mation, the system calculates the following conditional
probability using the BN . The results of the condi-
tional probability are shown in Table 2.

P (Head;Midjmh1 = 1;mh2 = 2; T f =00 >00)

The TolBel is calculated based on Eq.1, TolBef =
0:5 � (1:0+0:5714)= 0:5 � 1:5714. Since TolBel < thd1,
the robot has two candidate locations indicated by a
dot circle and a solid circle as shown in Fig. 9(a). The
robot must perform sensor planning to decrease this
uncertainty.

Using the sensor planning (described in Sec. 4.2), the
robot predicts possible actions and sensing informa-
tion expected by taking the actions, based on obtained
sensing information (mh1;mh2;Mf). Using the predic-
tion algorithm, the robot obtained actlist and Msen

as shown in Fig. 7. The predicted possible actions
are \turn left" and \turn right", and the sensor infor-
mation predicted by the possible actions has two rows,
respectively.

5.3 Sensor Planning for Localization

Using the sensor planning procedure (described in
Sec.4.3) and the speedup method (described in Sec.4.4),
the robot can determine its location based on the sens-
ing information which is shown by the dark background
in Fig. 7. The experimental results show that we can
obtain the same sensing range (marked in dark) using
the sensor planning procedure as well as the speedup
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Figure 7: Predicted possible actions (actlist) and
the sensing information predicted by the actions
(Msen) based on sensing information of the cor-
ridor (D ! K). (The integers of the table repre-
sent the predicted sensor information, i.e., instanti-
ations of the probabilistic variables (mh1;mh2; T f)
in the BN)
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Figure 8: The robot cannot obtain suÆcient sen-
sor information for localization until it goes to in-
tersection J .

method. In Fig. 9, either the \turn left" or \turn right"
action can determine two possible robot locations, but
the sensing cost of \turn right" is lower than that of
\turn left" (the area of dark region expected by taking
the action \turn right" is smaller than that of \turn
left"). As shown in Fig. 8, if the robot takes the \turn
left" action, it cannot localize itself until it goes to in-
tersection J . Hence, the optimal action is \turn right"
and the robot need not go to the next intersection for
the global localization (Fig. 9(b)).

6 Conclusion
We proposed a novel sensor planning method for mobile
robot localization using a Bayesian network. The BN
structure is learned from environment data based on
the K2 algorithm combined with GA. In the execution
phase, the sensor planner predicts possible actions and
sensing information to be obtained from these actions,
and selects an optimal plan by taking into account the
trade-o� between the global localization belief and the
sensing cost. The system are validated by simulation
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Figure 9: Example of sensor planning experiments
for robot localization. (In the �gure, the real num-
bers in ( ), ( ) with black squares and ( ) with
hatched squares represent the probability of node
Tail, Mid, Head, respectively. If the intersection
is the instantiation of node Tail, Mid, Head, the
probability is shown at the intersection.

experiments.
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